Halfrost's Field | 冰霜之地

一缕殇流化隐半边冰霜

嗨,我是冰霜 (@halfrost),一名来自中国的 iOS 开发者,已退役 acmer 。现居上海。吾笃信:德不孤,必有志,技不疏,必有朋。


深入研究Block捕获外部变量和__block实现原理

前言

Blocks是C语言的扩充功能,而Apple 在OS X Snow Leopard 和 iOS 4中引入了这个新功能“Blocks”。从那开始,Block就出现在iOS和Mac系统各个API中,并被大家广泛使用。一句话来形容Blocks,带有自动变量(局部变量)的匿名函数。

Block在OC中的实现如下:


struct Block_layout {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(void *, ...);
    struct Block_descriptor *descriptor;
    /* Imported variables. */
};

struct Block_descriptor {
    unsigned long int reserved;
    unsigned long int size;
    void (*copy)(void *dst, void *src);
    void (*dispose)(void *);
};

从结构图中很容易看到isa,所以OC处理Block是按照对象来处理的。在iOS中,isa常见的就是_NSConcreteStackBlock,_NSConcreteMallocBlock,_NSConcreteGlobalBlock这3种(另外只在GC环境下还有3种使用的_NSConcreteFinalizingBlock,_NSConcreteAutoBlock,_NSConcreteWeakBlockVariable,本文暂不谈论这3种,有兴趣的看看官方文档)

以上介绍是Block的简要实现,接下来我们来仔细研究一下Block的捕获外部变量的特性以及__block的实现原理。

研究工具:clang 为了研究编译器的实现原理,我们需要使用 clang 命令。clang 命令可以将 Objetive-C 的源码改写成 C / C++ 语言的,借此可以研究 block 中各个特性的源码实现方式。该命令是

clang -rewrite-objc block.c

####目录

  • 1.Block捕获外部变量实质
  • 2.Block的copy和release
  • 3.Block中__block实现原理

一.Block捕获外部变量实质

拿起我们的Block一起来捕捉外部变量吧。

说到外部变量,我们要先说一下C语言中变量有哪几种。一般可以分为一下5种:

  • 自动变量
  • 函数参数
  • 静态变量
  • 静态全局变量
  • 全局变量

研究Block的捕获外部变量就要除去函数参数这一项,下面一一根据这4种变量类型的捕获情况进行分析。

我们先根据这4种类型

  • 自动变量
  • 静态变量
  • 静态全局变量
  • 全局变量

写出Block测试代码。

这里很快就出现了一个错误,提示说自动变量没有加__block,由于__block有点复杂,我们先实验静态变量,静态全局变量,全局变量这3类。测试代码如下:


#import <Foundation/Foundation.h>

int global_i = 1;

static int static_global_j = 2;

int main(int argc, const char * argv[]) {
   
    static int static_k = 3;
    int val = 4;
    
    void (^myBlock)(void) = ^{
        global_i ++;
        static_global_j ++;
        static_k ++;
        NSLog(@"Block中 global_i = %d,static_global_j = %d,static_k = %d,val = %d",global_i,static_global_j,static_k,val);
    };
    
    global_i ++;
    static_global_j ++;
    static_k ++;
    val ++;
    NSLog(@"Block外 global_i = %d,static_global_j = %d,static_k = %d,val = %d",global_i,static_global_j,static_k,val);
    
    myBlock();
    
    return 0;
}

运行结果

Block 外  global_i = 2,static_global_j = 3,static_k = 4,val = 5
Block 中  global_i = 3,static_global_j = 4,static_k = 5,val = 4

这里就有2点需要弄清楚了 1.为什么在Block里面不加__bolck不允许更改变量? 2.为什么自动变量的值没有增加,而其他几个变量的值是增加的?自动变量是什么状态下被block捕获进去的?

为了弄清楚这2点,我们用clang转换一下源码出来分析分析。

(main.m代码行37行,文件大小832bype, 经过clang转换成main.cpp以后,代码行数飙升至104810行,文件大小也变成了3.1MB)

源码如下


int global_i = 1;

static int static_global_j = 2;

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int *static_k;
  int val;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_k, int _val, int flags=0) : static_k(_static_k), val(_val) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int *static_k = __cself->static_k; // bound by copy
  int val = __cself->val; // bound by copy

        global_i ++;
        static_global_j ++;
        (*static_k) ++;
        NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_6fe658_mi_0,global_i,static_global_j,(*static_k),val);
    }

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};


int main(int argc, const char * argv[]) {

    static int static_k = 3;
    int val = 4;

    void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &static_k, val));

    global_i ++;
    static_global_j ++;
    static_k ++;
    val ++;
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_6fe658_mi_1,global_i,static_global_j,static_k,val);

    ((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

    return 0;
}

首先全局变量global_i和静态全局变量static_global_j的值增加,以及它们被Block捕获进去,这一点很好理解,因为是全局的,作用域很广,所以Block捕获了它们进去之后,在Block里面进行++操作,Block结束之后,它们的值依旧可以得以保存下来。

接下来仔细看看自动变量和静态变量的问题。 在__main_block_impl_0中,可以看到静态变量static_k和自动变量val,被Block从外面捕获进来,成为__main_block_impl_0这个结构体的成员变量了。

接着看构造函数,


__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int *_static_k, int _val, int flags=0) : static_k(_static_k), val(_val)

这个构造函数中,自动变量和静态变量被捕获为成员变量追加到了构造函数中。

main里面的myBlock闭包中的__main_block_impl_0结构体,初始化如下

void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, &static_k, val));


impl.isa = &_NSConcreteStackBlock;
impl.Flags = 0;
impl.FuncPtr = __main_block_impl_0; 
Desc = &__main_block_desc_0_DATA;
*_static_k = 4;
val = 4; 

到此,__main_block_impl_0结构体就是这样把自动变量捕获进来的。也就是说,在执行Block语法的时候,Block语法表达式所使用的自动变量的值是被保存进了Block的结构体实例中,也就是Block自身中。

这里值得说明的一点是,如果Block外面还有很多自动变量,静态变量,等等,这些变量在Block里面并不会被使用到。那么这些变量并不会被Block捕获进来,也就是说并不会在构造函数里面传入它们的值。

Block捕获外部变量仅仅只捕获Block闭包里面会用到的值,其他用不到的值,它并不会去捕获。

再研究一下源码,我们注意到__main_block_func_0这个函数的实现


static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int *static_k = __cself->static_k; // bound by copy
  int val = __cself->val; // bound by copy

        global_i ++;
        static_global_j ++;
        (*static_k) ++;
        NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_6fe658_mi_0,global_i,static_global_j,(*static_k),val);
    }

我们可以发现,系统自动给我们加上的注释,bound by copy,自动变量val虽然被捕获进来了,但是是用 __cself->val来访问的。Block仅仅捕获了val的值,并没有捕获val的内存地址。所以在__main_block_func_0这个函数中即使我们重写这个自动变量val的值,依旧没法去改变Block外面自动变量val的值。

OC可能是基于这一点,在编译的层面就防止开发者可能犯的错误,因为自动变量没法在Block中改变外部变量的值,所以编译过程中就报编译错误。错误就是最开始的那张截图。

Variable is not assignable(missing __block type specifier)

小结一下: 到此为止,上面提出的第二个问题就解开答案了。自动变量是以值传递方式传递到Block的构造函数里面去的。Block只捕获Block中会用到的变量。由于只捕获了自动变量的值,并非内存地址,所以Block内部不能改变自动变量的值。Block捕获的外部变量可以改变值的是静态变量,静态全局变量,全局变量。上面例子也都证明过了。

剩下问题一我们还没有解决。

回到上面的例子上面来,4种变量里面只有静态变量,静态全局变量,全局变量这3种是可以在Block里面被改变值的。仔细观看源码,我们能看出这3个变量可以改变值的原因。

  1. 静态全局变量,全局变量由于作用域的原因,于是可以直接在Block里面被改变。他们也都存储在全局区。

  2. 静态变量传递给Block是内存地址值,所以能在Block里面直接改变值。

根据官方文档我们可以了解到,苹果要求我们在自动变量前加入 __block关键字(__block storage-class-specifier存储域类说明符),就可以在Block里面改变外部自动变量的值了。

总结一下在Block中改变变量值有2种方式,一是传递内存地址指针到Block中,二是改变存储区方式(__block)。

先来实验一下第一种方式,传递内存地址到Block中,改变变量的值。


#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
    
  NSMutableString * str = [[NSMutableString alloc]initWithString:@"Hello,"];
    
        void (^myBlock)(void) = ^{
            [str appendString:@"World!"];
            NSLog(@"Block中 str = %@",str);
        };
    
    NSLog(@"Block外 str = %@",str);
    
    myBlock();
    
    return 0;
}

控制台输出:

Block 外  str = Hello,
Block 中  str = Hello,World!

看结果是成功改变了变量的值了,转换一下源码。


struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  NSMutableString *str;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, NSMutableString *_str, int flags=0) : str(_str) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  NSMutableString *str = __cself->str; // bound by copy

            ((void (*)(id, SEL, NSString *))(void *)objc_msgSend)((id)str, sel_registerName("appendString:"), (NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_33ff12_mi_1);
            NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_33ff12_mi_2,str);
        }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->str, (void*)src->str, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->str, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};

int main(int argc, const char * argv[]) {
    NSMutableString * str = ((NSMutableString *(*)(id, SEL, NSString *))(void *)objc_msgSend)((id)((NSMutableString *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSMutableString"), sel_registerName("alloc")), sel_registerName("initWithString:"), (NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_33ff12_mi_0);

        void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, str, 570425344));

    NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_33ff12_mi_3,str);

    ((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

    return 0;
}

在__main_block_func_0里面可以看到传递的是指针。所以成功改变了变量的值。

至于源码里面的copy和dispose下一节会讲到。

改变外部变量值的第二种方式是加 __block这个放在第三章里面讨论,接下来我们先讨论一下Block的copy的问题,因为这个问题会关系到 __block存储域的问题。

二.Block的copy和dispose

OC中,一般Block就分为以下3种,_NSConcreteStackBlock,_NSConcreteMallocBlock,_NSConcreteGlobalBlock。

先来说明一下3者的区别。

1.从捕获外部变量的角度上来看
  • _NSConcreteStackBlock: 只用到外部局部变量、成员属性变量,且没有强指针引用的block都是StackBlock。 StackBlock的生命周期由系统控制的,一旦返回之后,就被系统销毁了。

  • _NSConcreteMallocBlock: 有强指针引用或copy修饰的成员属性引用的block会被复制一份到堆中成为MallocBlock,没有强指针引用即销毁,生命周期由程序员控制

  • _NSConcreteGlobalBlock: 没有用到外界变量或只用到全局变量、静态变量的block为_NSConcreteGlobalBlock,生命周期从创建到应用程序结束。

没有用到外部变量肯定是_NSConcreteGlobalBlock,这点很好理解。不过只用到全局变量、静态变量的block也是_NSConcreteGlobalBlock。举例如下:


#import <Foundation/Foundation.h>

int global_i = 1;
static int static_global_j = 2;

int main(int argc, const char * argv[]) {
   
    static int static_k = 3;

    void (^myBlock)(void) = ^{
            NSLog(@"Block中 变量 = %d %d %d",static_global_j ,static_k, global_i);
        };
    
    NSLog(@"%@",myBlock);
    
    myBlock();
    
    return 0;
}

输出:

<__NSGlobalBlock__: 0x100001050>
Block中 变量 = 2 3 1

可见,只用到全局变量、静态变量的block也可以是_NSConcreteGlobalBlock。

所以在ARC环境下,3种类型都可以捕获外部变量。

2.从持有对象的角度上来看:
  • _NSConcreteStackBlock是不持有对象的。

//以下是在MRC下执行的
    NSObject * obj = [[NSObject alloc]init];
    NSLog(@"1.Block外 obj = %lu",(unsigned long)obj.retainCount);
    
    void (^myBlock)(void) = ^{
        NSLog(@"Block中 obj = %lu",(unsigned long)obj.retainCount);
    };
    
    NSLog(@"2.Block外 obj = %lu",(unsigned long)obj.retainCount);
    
    myBlock();

输出:

1.Block外 obj = 1
2.Block外 obj = 1
Block中 obj = 1
  • _NSConcreteMallocBlock是持有对象的。
//以下是在MRC下执行的
    NSObject * obj = [[NSObject alloc]init];
    NSLog(@"1.Block外 obj = %lu",(unsigned long)obj.retainCount);
    
    void (^myBlock)(void) = [^{
        NSLog(@"Block中 obj = %lu",(unsigned long)obj.retainCount);
    }copy];
    
    NSLog(@"2.Block外 obj = %lu",(unsigned long)obj.retainCount);
    
    myBlock();
    
    [myBlock release];
    
    NSLog(@"3.Block外 obj = %lu",(unsigned long)obj.retainCount);

输出:

1.Block外 obj = 1
2.Block外 obj = 2
Block中 obj = 2
3.Block外 obj = 1
  • _NSConcreteGlobalBlock也不持有对象
//以下是在MRC下执行的
    void (^myBlock)(void) = ^{
        
        NSObject * obj = [[NSObject alloc]init];
        NSLog(@"Block中 obj = %lu",(unsigned long)obj.retainCount);
    };
    
    myBlock();

输出:


Block 中 obj = 1

由于_NSConcreteStackBlock所属的变量域一旦结束,那么该Block就会被销毁。在ARC环境下,编译器会自动的判断,把Block自动的从栈copy到堆。比如当Block作为函数返回值的时候,肯定会copy到堆上。

1.手动调用copy 2.Block是函数的返回值 3.Block被强引用,Block被赋值给__strong或者id类型 4.调用系统API入参中含有usingBlcok的方法

以上4种情况,系统都会默认调用copy方法把Block赋复制

但是当Block为函数参数的时候,就需要我们手动的copy一份到堆上了。这里除去系统的API我们不需要管,比如GCD等方法中本身带usingBlock的方法,其他我们自定义的方法传递Block为参数的时候都需要手动copy一份到堆上。

copy函数把Block从栈上拷贝到堆上,dispose函数是把堆上的函数在废弃的时候销毁掉。


#define Block_copy(...) ((__typeof(__VA_ARGS__))_Block_copy((const void *)(__VA_ARGS__)))
#define Block_release(...) _Block_release((const void *)(__VA_ARGS__))

// Create a heap based copy of a Block or simply add a reference to an existing one.
// This must be paired with Block_release to recover memory, even when running
// under Objective-C Garbage Collection.
BLOCK_EXPORT void *_Block_copy(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

// Lose the reference, and if heap based and last reference, recover the memory
BLOCK_EXPORT void _Block_release(const void *aBlock)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

// Used by the compiler. Do not call this function yourself.
BLOCK_EXPORT void _Block_object_assign(void *, const void *, const int)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

// Used by the compiler. Do not call this function yourself.
BLOCK_EXPORT void _Block_object_dispose(const void *, const int)
    __OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2);

上面是源码中2个常用的宏定义和4个常用的方法,一会我们就会看到这4个方法。


static void *_Block_copy_internal(const void *arg, const int flags) {
    struct Block_layout *aBlock;
    const bool wantsOne = (WANTS_ONE & flags) == WANTS_ONE;
    
    // 1
    if (!arg) return NULL;
    
    // 2
    aBlock = (struct Block_layout *)arg;
    
    // 3
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        // latches on high
        latching_incr_int(&aBlock->flags);
        return aBlock;
    }
    
    // 4
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        return aBlock;
    }
    
    // 5
    struct Block_layout *result = malloc(aBlock->descriptor->size);
    if (!result) return (void *)0;
    
    // 6
    memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
    
    // 7
    result->flags &= ~(BLOCK_REFCOUNT_MASK);    // XXX not needed
    result->flags |= BLOCK_NEEDS_FREE | 1;
    
    // 8
    result->isa = _NSConcreteMallocBlock;
    
    // 9
    if (result->flags & BLOCK_HAS_COPY_DISPOSE) {
        (*aBlock->descriptor->copy)(result, aBlock); // do fixup
    }
    
    return result;
}

上面这一段是Block_copy的一个实现,实现了从_NSConcreteStackBlock复制到_NSConcreteMallocBlock的过程。对应有9个步骤。


void _Block_release(void *arg) {
    // 1
    struct Block_layout *aBlock = (struct Block_layout *)arg;
    if (!aBlock) return;
    
    // 2
    int32_t newCount;
    newCount = latching_decr_int(&aBlock->flags) & BLOCK_REFCOUNT_MASK;
    
    // 3
    if (newCount > 0) return;
    
    // 4
    if (aBlock->flags & BLOCK_NEEDS_FREE) {
        if (aBlock->flags & BLOCK_HAS_COPY_DISPOSE)(*aBlock->descriptor->dispose)(aBlock);
        _Block_deallocator(aBlock);
    }
    
    // 5
    else if (aBlock->flags & BLOCK_IS_GLOBAL) {
        ;
    }
    
    // 6
    else {
        printf("Block_release called upon a stack Block: %p, ignored\\\\n", (void *)aBlock);
    }
}

上面这一段是Block_release的一个实现,实现了怎么释放一个Block。对应有6个步骤。

上述2个方法的详细解析可以看这篇文章

回到上一章节中最后的例子,字符串的例子中来,转换源码之后,我们会发现多了一个copy和dispose方法。

因为在C语言的结构体中,编译器没法很好的进行初始化和销毁操作。这样对内存管理来说是很不方便的。所以就在 __main_block_desc_0结构体中间增加成员变量 void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*)和void (*dispose)(struct __main_block_impl_0*),利用OC的Runtime进行内存管理。

相应的增加了2个方法。

static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->str, (void*)src->str, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->str, 3/*BLOCK_FIELD_IS_OBJECT*/);}

这里的_Block_object_assign和_Block_object_dispose就对应着retain和release方法。

BLOCK_FIELD_IS_OBJECT 是Block截获对象时候的特殊标示,如果是截获的__block,那么是BLOCK_FIELD_IS_BYREF。

三.Block中__block实现原理

我们继续研究一下__block实现原理。

1.普通非对象的变量

先来看看普通变量的情况。


#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
    
    __block int i = 0;
    
    void (^myBlock)(void) = ^{
        i ++;
        NSLog(@"%d",i);
    };
    
    myBlock();
    
    return 0;
}

把上述代码用clang转换成源码。


struct __Block_byref_i_0 {
  void *__isa;
__Block_byref_i_0 *__forwarding;
 int __flags;
 int __size;
 int i;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __Block_byref_i_0 *i; // by ref
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_i_0 *_i, int flags=0) : i(_i->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_i_0 *i = __cself->i; // bound by ref

        (i->__forwarding->i) ++;
        NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_3b0837_mi_0,(i->__forwarding->i));
    }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->i, (void*)src->i, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->i, 8/*BLOCK_FIELD_IS_BYREF*/);}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, const char * argv[]) {
    __attribute__((__blocks__(byref))) __Block_byref_i_0 i = {(void*)0,(__Block_byref_i_0 *)&i, 0, sizeof(__Block_byref_i_0), 0};

    void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_i_0 *)&i, 570425344));

    ((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

    return 0;
}

从源码我们能发现,带有 __block的变量也被转化成了一个结构体__Block_byref_i_0,这个结构体有5个成员变量。第一个是isa指针,第二个是指向自身类型的__forwarding指针,第三个是一个标记flag,第四个是它的大小,第五个是变量值,名字和变量名同名。

__attribute__((__blocks__(byref))) __Block_byref_i_0 i = {(void*)0,(__Block_byref_i_0 *)&i, 0, sizeof(__Block_byref_i_0), 0};

源码中是这样初始化的。__forwarding指针初始化传递的是自己的地址。然而这里__forwarding指针真的永远指向自己么?我们来做一个实验。


//以下代码在MRC中运行
    __block int i = 0;
    NSLog(@"%p",&i);
    
    void (^myBlock)(void) = [^{
        i ++;
        NSLog(@"这是Block 里面%p",&i);
    }copy];

我们把Block拷贝到了堆上,这个时候打印出来的2个i变量的地址就不同了。

0x7fff5fbff818
<__NSMallocBlock__: 0x100203cc0>
这是Block 里面 0x1002038a8

地址不同就可以很明显的说明__forwarding指针并没有指向之前的自己了。那__forwarding指针现在指向到哪里了呢?

Block里面的__block的地址和Block的地址就相差1052。我们可以很大胆的猜想,__block现在也在堆上了。

出现这个不同的原因在于这里把Block拷贝到了堆上。

由第二章里面详细分析的,堆上的Block会持有对象。我们把Block通过copy到了堆上,堆上也会重新复制一份Block,并且该Block也会继续持有该__block。当Block释放的时候,__block没有被任何对象引用,也会被释放销毁。

__forwarding指针这里的作用就是针对堆的Block,把原来__forwarding指针指向自己,换成指向_NSConcreteMallocBlock上复制之后的__block自己。然后堆上的变量的__forwarding再指向自己。这样不管__block怎么复制到堆上,还是在栈上,都可以通过(i->__forwarding->i)来访问到变量值。

所以在__main_block_func_0函数里面就是写的(i->__forwarding->i)。

这里还有一个需要注意的地方。还是从例子说起:

//以下代码在MRC中运行
    __block int i = 0;
    NSLog(@"%p",&i);
    
    void (^myBlock)(void) = ^{
        i ++;
        NSLog(@"Block 里面的%p",&i);
    };
    
    
    NSLog(@"%@",myBlock);
    
    myBlock();

结果和之前copy的例子完全不同。


 0x7fff5fbff818
<__NSStackBlock__: 0x7fff5fbff7c0>**
 0x7fff5fbff818

Block在捕获住__block变量之后,并不会复制到堆上,所以地址也一直都在栈上。这与ARC环境下的不一样。

ARC环境下,不管有没有copy,__block都会变copy到堆上,Block也是__NSMallocBlock。

感谢@酷酷的哀殿 指出错误,感谢@bestswifter 指点。上述说法有点不妥,详细见文章末尾更新。

ARC环境下,一旦Block赋值就会触发copy,__block就会copy到堆上,Block也是__NSMallocBlock。ARC环境下也是存在__NSStackBlock的时候,这种情况下,__block就在栈上。

MRC环境下,只有copy,__block才会被复制到堆上,否则,__block一直都在栈上,block也只是__NSStackBlock,这个时候__forwarding指针就只指向自己了。

至此,文章开头提出的问题一,也解答了。__block的实现原理也已经明了。

2.对象的变量

还是先举一个例子:


//以下代码是在ARC下执行的
#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
     
    __block id block_obj = [[NSObject alloc]init];
    id obj = [[NSObject alloc]init];

    NSLog(@"block_obj = [%@ , %p] , obj = [%@ , %p]",block_obj , &block_obj , obj , &obj);
    
    void (^myBlock)(void) = ^{
        NSLog(@"***Block中****block_obj = [%@ , %p] , obj = [%@ , %p]",block_obj , &block_obj , obj , &obj);
    };
    
    myBlock();
   
    return 0;
}

输出


block_obj = [<NSObject: 0x100b027d0> , 0x7fff5fbff7e8] , obj = [<NSObject: 0x100b03b50> , 0x7fff5fbff7b8]
Block****中********block_obj = [<NSObject: 0x100b027d0> , 0x100f000a8] , obj = [<NSObject: 0x100b03b50> , 0x100f00070]

我们把上面的代码转换成源码研究一下:


struct __Block_byref_block_obj_0 {
  void *__isa;
__Block_byref_block_obj_0 *__forwarding;
 int __flags;
 int __size;
 void (*__Block_byref_id_object_copy)(void*, void*);
 void (*__Block_byref_id_object_dispose)(void*);
 id block_obj;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  id obj;
  __Block_byref_block_obj_0 *block_obj; // by ref
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, id _obj, __Block_byref_block_obj_0 *_block_obj, int flags=0) : obj(_obj), block_obj(_block_obj->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_block_obj_0 *block_obj = __cself->block_obj; // bound by ref
  id obj = __cself->obj; // bound by copy

        NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_e64910_mi_1,(block_obj->__forwarding->block_obj) , &(block_obj->__forwarding->block_obj) , obj , &obj);
    }
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->block_obj, (void*)src->block_obj, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_assign((void*)&dst->obj, (void*)src->obj, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->block_obj, 8/*BLOCK_FIELD_IS_BYREF*/);_Block_object_dispose((void*)src->obj, 3/*BLOCK_FIELD_IS_OBJECT*/);}

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};


int main(int argc, const char * argv[]) {

    __attribute__((__blocks__(byref))) __Block_byref_block_obj_0 block_obj = {(void*)0,(__Block_byref_block_obj_0 *)&block_obj, 33554432, sizeof(__Block_byref_block_obj_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"))};

    id obj = ((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)((NSObject *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("NSObject"), sel_registerName("alloc")), sel_registerName("init"));
    NSLog((NSString *)&__NSConstantStringImpl__var_folders_45_k1d9q7c52vz50wz1683_hk9r0000gn_T_main_e64910_mi_0,(block_obj.__forwarding->block_obj) , &(block_obj.__forwarding->block_obj) , obj , &obj);

    void (*myBlock)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, obj, (__Block_byref_block_obj_0 *)&block_obj, 570425344));

    ((void (*)(__block_impl *))((__block_impl *)myBlock)->FuncPtr)((__block_impl *)myBlock);

    return 0;
}

首先需要说明的一点是对象在OC中,默认声明自带__strong所有权修饰符的,所以main开头我们声明的


__block id block_obj = [[NSObject alloc]init];
id obj = [[NSObject alloc]init];

等价于


__block id __strong block_obj = [[NSObject alloc]init];
id __strong obj = [[NSObject alloc]init];

在转换出来的源码中,我们也可以看到,Block捕获了__block,并且强引用了,因为在__Block_byref_block_obj_0结构体中,有一个变量是id block_obj,这个默认也是带__strong所有权修饰符的。

根据打印出来的结果来看,ARC环境下,Block捕获外部对象变量,是都会copy一份的,地址都不同。只不过带有__block修饰符的变量会被捕获到Block内部持有。

我们再来看看MRC环境下的情况,还是将上述代码的例子运行在MRC中。

输出:


block_obj = [<NSObject: 0x100b001b0> , 0x7fff5fbff7e8] , obj = [<NSObject: 0x100b001c0> , 0x7fff5fbff7b8]
Block****中********block_obj = [<NSObject: 0x100b001b0> , 0x7fff5fbff7e8] , obj = [<NSObject: 0x100b001c0> , 0x7fff5fbff790]

这个时候block在栈上,__NSStackBlock__,可以打印出来retainCount值都是1。当把这个block copy一下,就变成__NSMallocBlock__,对象的retainCount值就会变成2了。

总结:

在MRC环境下,__block根本不会对指针所指向的对象执行copy操作,而只是把指针进行的复制。 而在ARC环境下,对于声明为__block的外部对象,在block内部会进行retain,以至于在block环境内能安全的引用外部对象,所以才会产生循环引用的问题!

最后

关于Block捕获外部变量有很多用途,用途也很广,只有弄清了捕获变量和持有的变量的概念以后,之后才能清楚的解决Block循环引用的问题。

再次回到文章开头,5种变量,自动变量,函数参数 ,静态变量,静态全局变量,全局变量,如果严格的来说,捕获是必须在Block结构体__main_block_impl_0里面有成员变量的话,Block能捕获的变量就只有带有自动变量和静态变量了。捕获进Block的对象会被Block持有。

对于非对象的变量来说,

自动变量的值,被copy进了Block,不带__block的自动变量只能在里面被访问,并不能改变值。

带__block的自动变量 和 静态变量 就是直接地址访问。所以在Block里面可以直接改变变量的值。

而剩下的静态全局变量,全局变量,函数参数,也是可以在直接在Block中改变变量值的,但是他们并没有变成Block结构体__main_block_impl_0的成员变量,因为他们的作用域大,所以可以直接更改他们的值。

值得注意的是,静态全局变量,全局变量,函数参数他们并不会被Block持有,也就是说不会增加retainCount值。

对于对象来说,

在MRC环境下,__block根本不会对指针所指向的对象执行copy操作,而只是把指针进行的复制。 而在ARC环境下,对于声明为__block的外部对象,在block内部会进行retain,以至于在block环境内能安全的引用外部对象。

请大家多多指点。

更新

在ARC环境下,Block也是存在__NSStackBlock的时候的,平时见到最多的是_NSConcreteMallocBlock,是因为我们会对Block有赋值操作,所以ARC下,block 类型通过=进行传递时,会导致调用objc_retainBlock->_Block_copy->_Block_copy_internal方法链。并导致 __NSStackBlock__ 类型的 block 转换为 __NSMallocBlock__ 类型。

举例如下:


#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {
    
    __block int temp = 10;
    
    NSLog(@"%@",^{NSLog(@"*******%d %p",temp ++,&temp);});
   
    return 0;
}

输出

<__NSStackBlock__: 0x7fff5fbff768>

这种情况就是ARC环境下Block是__NSStackBlock的类型。

最近的文章

深入研究Block用weakSelf、strongSelf、@weakify、@strongify解决循环引用

前言在上篇中,仔细分析了一下Block的实现原理以及__block捕获外部变量的原理。然而实际使用Block过程中,还是会遇到一些问题,比如Retain Circle的问题。目录 1.Retain Circle的由来 2.__weak、__strong的实现原理 3.weakSelf、strongSelf的用途 4.@weakify、@strongify实现原理一. Retain Circle的由来循环引用的问题相信大家都很理解了,这里还是简单的提一下。当A对象里面强引用了B对象,...…

iOS继续阅读
更早的文章

给iOS 模拟器“安装”app文件

前言刚刚接触iOS的时候,我就一直很好奇,模拟器上面能不能直接安装app呢?如果可以,我们就直接在模拟器上面聊QQ和微信了。直到昨天和朋友们聊到了这个话题,没有想到还真的可以给模拟器“安装”app!一.应用场景先来谈谈是什么情况下,会有在模拟器上安装app的需求。在一个大公司里,对源码的管理有严格的制度,非开发人员是没有权限接触到源码的。对苹果的开发证书管理也非常严格,甚至连开发人员也没有发布证书,证书只在持续集成环境或者Appstore产线里面,或者只在最后打包上架的人手上。那么现在就有...…

iOS继续阅读